Small order asymptotics for nonlinear fractional problems
نویسندگان
چکیده
We study the limiting behavior of solutions to boundary value nonlinear problems involving fractional Laplacian order 2s when parameter s tends zero. In particular, we show that least-energy converge (up a subsequence) nontrivial nonnegative solution problem in terms logarithmic Laplacian, i.e. pseudodifferential operator with Fourier symbol \(\ln (|\xi |^2)\). These results are motivated by some applications nonlocal models where small for yields optimal choice. Our approach is based on variational methods, uniform energy-derived estimates, and use new logarithmic-type Sobolev inequality.
منابع مشابه
Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
*Correspondence: [email protected] 1School of Mathematical Science and Computing Technology, Central South University, Changsha, Hunan 410075, P.R. China 2School of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha, Hunan 410076, P.R. China Full list of author information is available at the end of the article Abstract By using Schauder’s fixed poin...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
an lmi approach to resilient fractional order observer design for lipschitz fractional order nonlinear systems using continuous frequency distribution
non-fragile observer design is the main problem of this paper. using continuous frequency distribution, the stability conditions based on integer order lyapunov theorem are derived for lipschitz class of nonlinear fractional order systems. the proposed observer is stable beside the existence of both gain perturbation and input disturbance. for the first time, in this paper a systematic method i...
متن کاملStability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملNew Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order
In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in ord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2022
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-022-02192-w